Трансгенерационные эффекты.

 Трансгенерационные эффекты.

     Мультигенерационные эффекты воздействия токсичных веществ отражаются на поколениях, которые в момент воздействия уже присутствовали хотя бы в виде половых клеток. В то же время трансгенерационные эффекты проявляются и спустя очень длительное время после того, как воздействие состоялось. На первый взгляд сложно понять, как воздействие во время беременности может негативно влиять на следующие за внуками, то есть F2, поколения. Однако недавние эксперименты на грызунах показали, что мультигенерационные эффекты сохраняются и в поколении F3 и далее.

     Первые зафиксированные случаи химически индуцированных трансгенерационных эффектов наблюдались при воздействии на крыс (поколение F0) пестицида винклозина – фунгицида, также являющегося антиандрогеном. Выяснилось, что в поколении F2, полученном при случайном скрещивании потомков из поколения F1, у подавляющего большинства самцов возникает специфический дефект сперматозоидов (увеличение уровня запрограммированной гибели клеток, или апоптоза). К удивлению ученых, этот дефект сохранялся и в последующих поколениях, вплоть до F4. Дополнительные эксперименты показали, что при скрещивании потомков мужского пола с самками из другой линии, не подвергавшейся воздействию, эффект также передается самцам последующих поколений, но при скрещивании самцов из другой линии с самками из экспериментальной он исчезает, что свидетельствует о том, что трансгенерационное нарушение передается по мужской линии.

     За время, прошедшее после первых экспериментов с винклозином, стало понятно, что трансгенерационные эффекты не ограничиваются апоптозом сперматозоидов, и в последующих поколениях может наблюдаться целый ряд негативных последствий. Кроме того, исследования показали, что другие влияющие на эндокринную систему вещества, например диоксины, метоксихлор (смесь пестицидов, включающая перметрин), ДЭТА и углеводороды (реактивное топливо), также способны производить трансгенерационные эффекты, которые нередко передаются по линии одного пола (мужского или женского).

     Как же воздействие, которое испытала ваша прапрабабка, может влиять на вас? Подобные трансгенерационные эффекты – отнюдь не научная фантастика, а неоднократно зафиксированная учеными реальность, обусловленная эпигенетическими механизмами, описанными выше. Чтобы понять, как все это происходит, необходимо снова вернуться к эпигенетической модификации и к тому, что происходит с ней от поколения к поколению.

     Метилирование ДНК, происходящее в течение жизни отдельных индивидуумов (например, однояйцевых близнецов, о которых мы говорили выше), можно рассматривать как процесс прогрессивной модификации генетического материала. Однако при смене поколений этого не происходит, поскольку в определенные моменты развития все эпигенетические модификации фактически стираются. В период эмбрионального развития при морфологическом определении пола (развития того или иного типа половых желез) в будущих половых клетках происходит полное демитилирование, так что все метильные маркеры, накопившиеся в родительском поколении, удаляются.

     Интересно, что сразу после такого демитилирования процесс метилирования ДНК начинается снова. Это необходимо, так как метилирование – фундаментальный механизм «выключения» определенных генов. Кроме того, благодаря эпигенетической модификации экспрессия некоторых, так называемых импринтинговых, генов может происходить только у родителя, который является их носителем. Такие гены нарушают нормальные законы наследования, согласно которым степень экспрессии генов каждого из родителей должна быть одинакова. Иными словами, гены с одной стороны (часто материнской) выключаются, а гены с другой (отцовской) – работают. Такие изменения экспрессии могут быть адаптивными, так как именно отцовские гены могут способствовать получению плодом всех необходимых ресурсов материнского организма, а материнские – более равномерному распределению генетических ресурсов между матерью и плодом (или несколькими). Таким образом, процесс геномного импринтинга – это эпигенетический механизм, благодаря которому отец гарантирует своему потомству наилучшие условия внутриутробного развития.

     В настоящее время ученые сходятся во мнении, что такие химические вещества, как винклозин, воздействуют на последующие поколения путем геноподобного импринтинга. После демитилирования эпигенетические маркеры, связанные с определенными заболеваниями, так же как и полезные импринтинговые гены, вновь метилируются и снова закрепляются в эпигеноме. Подобно маскирующимся под клеточные сигналы чужеродным веществам, некоторые токсины вызывают эпигенетические изменения, которые могут сохраняться в потомстве как минимум до четвертого поколения. Экзогенные химические вещества «взламывают» естественные и необходимые биологические процессы, нанося долговременный ущерб.

     Эпигенетика действительно подрывает идеи и определения классической токсикологии. Если вещество вызывает изменения в геноме, которые отражаются на многих поколениях после конкретного воздействия, стоит ли считать этот эффект принадлежащим к сфере токсикологии или лучше рассматривать его как проблему биологии развития или молекулярной генетики? Кроме того, следует ли требовать от компаний-производителей таких веществ, как винклозин или метоксихлор, тестировать безопасность их продукции на многих поколениях потомков?